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Abstract
Leg stiffness was compared between age-matched males and females during hopping at preferred
and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical
center of mass (COM) displacement and ground-reaction forces recorded from a force plate during
the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical
displacement of the COM during ground contact in relation to the square of hopping frequency. This
supports the accuracy of the spring–mass oscillator as a representative model of hopping. It also
maintained peak vertical ground-reaction load at approximately three times body weight. Leg
stiffness values in males (33.9 ± 8.7kN/m) were significantly (p < 0.01) greater than in females (26.3
± 6.5kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the
spring–mass oscillator model leg stiffness and body mass are related to the frequency of motion.
Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the
same frequency as the lighter female subjects during the controlled frequency trials. However, in the
preferred hopping condition the stiffness was not constrained by the task because frequency was self-
selected. Nonetheless, both male and female subjects hopped at statistically similar preferred
frequencies (2.34 ± 0.22Hz), therefore, the females continued to demonstrate less leg stiffness.
Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness,
these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
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1. Introduction
Epidemiological research reveals that females have a greater risk of lower extremity
musculoskeletal injuries during functional activities than males [1-3]. Specifically, females
sustain a greater incidence of knee related injuries [3-6] including knee sprains [7,8], anterior
cruciate ligament (ACL) injuries [3,4,9,10], meniscal and cartilaginous tears [4], and patello–
femoral disorders [11-13,14]. This trend has been demonstrated within several comparable
sports. Female high school basketball players suffer 3.8 times the risk of ACL injury then
males. Female collegiate soccer and basketball players demonstrate twice the risk of ACL and
cartilage knee injury rates compared to their male counterparts [3,4,13]. Although the gender
bias has yet to be explained, musculoskeletal joint stability has been implicated as contributing
factor to knee injury [15,16]. To improve gender equity in leisure, athletic and work-related
activities it is necessary to understand potential gender differences relating to musculoskeletal
stability.
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Active muscle stiffness is essential for the maintenance of joint stability [17,18]. At low applied
loads the passive structures of the knee provide sufficient stability and resistance to anterior
tibial translation [19,20]. During weight-bearing and sporting activities joint forces go well
beyond the stabilizing capacity of the joint capsule and ligaments and require assistance from
active muscles to stabilize the joint. Hence, muscles serve as the primary active stabilizers of
the knee during functional loading conditions, protecting against musculoskeletal injury
[21-23]. Recent evidence demonstrates less stiffness in active muscles of females when
compared to age-matched male subjects. This has been demonstrated by Wojtys [24] who
concluded that active muscle co-contraction reduced anterior tibial translation more in men
than in women. Similar results were demonstrated in tibial rotation [25]. During controlled
measurements of knee kinematics following mechanical perturbation during active flexion and
extension exertions, it has recently been demonstrated that women demonstrate less than 57%
of the active muscle stiffness compared to males [26]. This may contribute to gender differences
in musculoskeletal stability of the knee. It is unknown whether the lower stiffness measured
in these controlled experiments translates to equivalent reductions in functional performance
parameters such as leg stiffness during running and hopping.

Non-contact mechanisms of injury associated with jumping and landing are implicated in many
lower extremity related injuries [7,12,27]. Active muscle stiffness contributes to leg stiffness
and can be measured during functional tasks such as running and hopping have been reported
[28-30]. Although it can be debated whether these measurements of leg stiffness truly record
mechanical stiffness [31,32], research illustrates that the dynamics of hopping and running can
be accurately represented using an equivalent mass–spring model [33]. The leg stiffness is
attributed to the active muscle stiffness of the controlling joints [34] thereby influencing
biomechanical stability. Unfortunately, there are no reported measures specifically examining
gender differences in leg stiffness during functional tasks such as hopping.

We have previously observed that women demonstrate less active muscle stiffness during
controlled open-chain measurements of the isolated in vivo knee compared to males. However,
during functional performance tasks neuromotor control can voluntarily and reflexively
modulate muscle stiffness [35,36]. This can be achieved through muscle recruitment strategies
[37] or postural adaptation [34]. The goal of the present study was to evaluate whether female
subjects also demonstrate less leg stiffness in functional tasks, specifically during two-legged
hopping. It was hypothesized that male subjects must recruit greater leg stiffness during
hopping than female subjects in order to drive their larger body mass during controlled
frequency tasks. It was further hypothesized that lower active muscle stiffness in female
subjects observed from previous analyses would translate to lower leg stiffness in hopping
tasks at preferred frequency hopping tasks compared to the male subject group.

2. Materials and methods
2.1. Procedures

Measurements of leg stiffness were determined by requiring subjects to perform two-legged
hopping on a force platform. Approximately 30-hops were performed at each hopping
frequency. Vertical ground-reaction force was recorded from a force platform (Kistler/Bertec
6700, natural frequency 400 Hz, linearity ±0.2% full scale), sampled at 1000 Hz via an analogue
to digital converter (RunTech, Laguna Hills, CA) and stored on a personal computer for post-
test analysis. Subjects were asked to hop in place without shoes and with their hands on their
hips at three separate hopping frequencies. Hopping was performed first at their preferred rate,
then at 2.5 and finally at 3.0 Hz. Controlled frequency hopping was easily achieved by
performing the tasks in time with a digital metronome. Subjects were instructed that each hop
must be a continuous motion and were allowed as much practice as needed until they felt
comfortable at the designated frequency. Hopping frequencies of 2.5 and 3.0 Hz were selected
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in addition to the preferred hopping frequency as they have been previously determined to be
higher than the average preferred hopping frequency for humans and thus reveal greater leg
stiffness values [29].

2.2. Subjects
Fifteen male and fifteen female volunteers with no reported knee abnormalities or recent
musculoskeletal injuries participated in this study. Subjects ranged in age from 21 to 62 years
with no significant difference in age between genders (Table 1). A separate validation study
was performed using a similar protocol on an independent set of subjects who were generally
younger and more physically active. Subjects in this group ranged in age from 21 to 31 years
with no significant difference in age between genders (Table 1). In this second effort eleven
male and ten female subjects performed the two-legged hopping at their preferred rate and at
3.0 Hz. Informed consent approved by the Human Investigations Committee, University of
Virginia, was obtained from all subjects.

Ten acceptable hopping trials were used for analysis at each frequency condition. Hopping
trials were determined to be acceptable based on two criteria. First, only those trials where the
subject's hopping frequency was within 5% of the designated metronome frequency were
accepted for data analysis. During preferred hopping steady-state behavior was assured by
requiring the period of individual hops be within 5% of the mean value. Second, the correlation
between vertical displacement and vertical ground-reaction force during the ground-contact
phase of hopping must have been greater than r = 0.80 to be accepted for data analysis (Fig.
1). Hopping trials unable to meet these specified criteria were not used for data analysis.

Two independent methods were implemented in customized software to compute the leg
stiffness during each hop. First, leg stiffness was determined by comparing the vertical ground-
reaction force with the vertical displacement of the center of mass (COM) during the ground-
contact phase as described by McMahon and Cheng [30]. Briefly, vertical acceleration of the
COM was determined from the ground-reaction force and the subject's body mass as described
by Cavagna [38]. Vertical displacement of the COM was calculated from numeric double
integration of the acceleration data. Integration constants for velocity were based upon steady-
state performance criteria wherein the mean vertical COM velocity is zero. Since the goal was
to determine COM displacement, the integration constant for position was set arbitrarily to
zero. Stiffness was determined from the regression slope of the profile when vertical ground-
reaction force was plotted versus COM displacement [28] (Fig. 1). A second method of
calculating stiffness was achieved by determining the natural frequency of the equivalent mass–
spring system as described by Farley [29]. The ground-contact time during which the vertical
force was greater than body weight represents a half-period of the harmonic oscillation (T / 2).
Leg stiffness, k, can be calculated from the resonant period, T, and total body mass, M, recorded
from static force plate measurements

k = M (2 ∕ T )2 (1)

2.3. Statistical analysis
Leg stiffness values recorded during functional hopping tasks from each subject were averaged
across the acceptable trials for each hopping frequency condition and analyzed using a mixed-
model, 2-factor, repeated measures ANOVA with gender as the between-subject factor and
hopping frequency as the within-subject factor. Separate one-way ANOVA were performed
to evaluate differences in body mass, standing height, age, and preferred hopping frequency
variables between genders. Repeated-measured ANOVA was used to assess duty cycle
(ground-contact time as a percent of total hopping cycle) at each hopping frequency. The two
studies were evaluated in separate statistical analyses to permit comparison of results and
validation of conclusions. Statistical significance was set at α < 0.05 for all analyses.
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In an attempt to understand factors contributing to the gender effects, multiple regression was
performed incorporating the independent variables of gender, body mass, standing height,
subject age, duty cycle and preferred hopping frequency.

3. Results
The method of leg stiffness calculation including regression slope and harmonic period
methods generated near identical results. Therefore, only results from the regression slope
method for calculating leg stiffness are presented.

A total of 19-trials were removed from the data set prior to analysis (10 at preferred, 2 at 2.5
and 7 at 3.0 Hz hopping conditions). Trials were removed from the data set when the subject's
measured hopping frequency was not within 5% of specified hopping frequency or the
correlation between vertical displacement and vertical ground-reaction force during the
ground-contact phases of hopping was r < 0.80. Average correlations between vertical
displacement and vertical ground reaction (Fig. 1) for the accepted trials were high for each of
the hopping conditions (rpref = 0.92 ± 0.01; r2.5Hz = 0.94 ± 0.01; r3.0Hz = 0.96 ± 0.03) (Fig. 1).

Results from the statistical analyses revealed significant main effects for gender (p = 0.004)
and hopping frequency (p = 0.0001). Mean leg stiffness values were 30.1 ± 11.0kN/m and
agree with values from the published literature [29]. Stiffness values were significantly greater
in males (33.9 ± 8.7kN/m) than in females (26.3 ± 6.5kN/m), with significant differences at
each of the hopping frequencies. Both male and female subjects hopped at statistically similar
preferred frequencies (2.34 ± 0.22Hz) (Table 2).

Vertical displacement of the COM during ground contact was modulated in proportion to the
square of hopping frequency. Peak-to-peak motion of the COM during ground contact
significantly (p < 0.0001) declined with increasing hopping frequency, 8.4 ± 2.0, 7.1 ± 0.8,
and 5.1 ± 0.4cm for the preferred, 2.5 and 3.0 Hz tasks, respectively. Analyses demonstrated
this amplitude was proportional to hopping frequency raised to the power −1.92 ± 0.43,
explaining 89% of the peak COM variability. This suggests subjects may have attempted to
maintain peak acceleration and ground-contact force independent of hopping frequency by
regulating the amplitude of the motion. Peak vertical ground-reaction force was significantly
greater in males than in females but the difference was attributable to the increased body mass
in the male population. Peak force normalized to body weight was not significantly influenced
by gender and varied approximately 4% between frequency conditions.

The relation between gender and stiffness was determined to be a covariate of body mass.
Multiple regression revealed that variance in leg stiffness was explained predominately by
body mass, hopping frequency, and duty cycle; with the models accounting for 85–87% of the
total variance (Table 3). Gender did not enter the regression as a significant variable, rather
the differences in body mass explained the gender effect on hopping leg stiffness. Although
subjects were constrained to hopping at specified frequencies in two of the three conditions,
time spent in ground contact versus time in flight phase was not controlled. Nonetheless, both
males and females hopped with statistically similar duty cycles (64 ± 8%). Hopping frequency
and duty cycle combine to form the natural harmonic frequency of motion, i.e. these two factors
describe ground-contact time. Recognizing that body mass was significantly less in women
than in the men, Eq. (1) dictates that women must demonstrate less leg stiffness to hop at the
appropriate controlled frequency. However, in the preferred hopping frequency condition the
female subjects could easily have recruited stiffness identical to the value demonstrated by
male subjects. Instead, the data demonstrates that women consistently chose to hop at a
statistically similar preferred frequency as the male subjects by recruiting a lower stiffness
(kPref = 26.3 ± 9.1Hz). Thus, when motion constraints were removed, the women continued to
demonstrate lower leg stiffness.

Granata et al. Page 4

J Electromyogr Kinesiol. Author manuscript; available in PMC 2006 November 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To validate these results, a second study using a younger, more physically active population
was performed with 21 subjects. The results of the second study demonstrated comparable
findings to the first. A total of 10-trials were removed from the data set prior to analysis (6 at
preferred hoping frequency and 4 at 3.0 Hz hopping conditions) when failing to meet the
performance criteria. Average correlations between vertical displacement and vertical ground
reaction for the accepted trials were high (rpref = 0.94 ± 0.01; r3.0Hz = 0.95 ± 0.01). There was
a significant main effect for gender (p < 0.011) as stiffness values were again significantly
greater in males (34.7 ± 9.8kN/m) than females (28.4 ± 9.3kN/m). In addition there was a
significant main effect for hopping frequency (p < 0.001) as stiffness values were greater during
3.0 Hz conditions than preferred hopping frequencies. Multiple regression analyses also
revealed that primarily body mass, hopping frequency, and duty cycle explained leg stiffness,
none of the variance was explained by gender.

4. Discussion
Active muscle stiffness contributes to the biomechanical stability of the knee [17]. By
improving stability active muscle stiffness [18,24] may contribute to the prevention of
musculoskeletal injury. Passive knee instability measured in terms of laxity, i.e. the relation
between anterior tibial distraction and distraction force, is correlated with the risk of
musculoskeletal injury [15,16]. This knee laxity is greater in females compared to equivalently
trained males [39]. Recognizing that laxity is the inverse of passive stiffness, these results
indicate that females have less distraction stiffness in the knee. Active muscle contribution to
stability may also be influenced by gender [24,25] with recent evidence indicating that women
demonstrate less than 57% of the active muscle stiffness compared to males during non-weight-
bearing measurements of the in vivo knee [26].

The objective of the current study was to examine the role of gender on leg stiffness during
functional weight-bearing tasks, specifically two-legged hopping. The hopping task was
selected based on epidemiologic injury data suggesting that one of the primary non-contact
injury mechanisms for the lower extremity is landing from a jump [7,12,27]. Epidemiologic
data have established that females are at a greater risk for a variety of lower extremity related
injuries than their male counterparts, most notably ACL injuries [3,4,9,10]. Musculoskeletal
stability may contribute to this difference. Active muscle stiffness is the primary control
variable in musculoskeletal stability [40,41]. Thus, it was hypothesized that female subjects
would demonstrate lower leg stiffness during the hopping tasks

Leg stiffness in the female subjects during the hopping task was approximately 77% of the leg
stiffness in the male subjects. These findings were confirmed in the separate investigation
where leg stiffness in females was 81% of the leg stiffness observed in males. During the
controlled hopping frequency conditions the gender difference was explained primarily by
body weight. Female subjects weighed an average of 83% of the male subject population in
the two populations. In a mass–spring model of harmonic motion the stiffness must change in
proportion to the system mass in order to maintain a constant frequency. Similarly, when
frequency of hopping increases stiffness must also increase to oscillate the mass. Empirical
results confirm this requirement, i.e. vertical leg stiffness increased with frequency (Fig. 1),
and agree with the literature [28,29]. In fact, the stiffness increased in proportion to the square
of frequency supporting the validity of the spring–mass oscillator as a model of leg behavior
in hopping. Other factors that may have contributed to the gender difference in leg stiffness
was muscle recruitment strategies and leg posture during hopping. Functional leg stiffness is
influenced by knee angle [30,34,42]. Kinematic data describing landing strategies suggest
possible gender differences in knee and ankle flexion angles at contact [43-46]. These strategies
may be employed to tune the mass–spring system to achieve the prescribed hopping frequency
and will be examined in future research. However, body mass explained the majority of the
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gender effect during the controlled hopping conditions. Body mass does not adequately explain
gender factors during the preferred hopping frequency condition.

Preferred hopping frequencies described in the scientific literature were similar to our value
of 2.34 ± 0.22Hz (65% duty cycle). Jones and Watt [47] reported preferred hopping frequency
values 2.06 ± 0.07Hz but these were representative of one-legged hopping. Cavagna [33]
demonstrated that leg stiffness during two-legged hopping was greater than for one-legged
hopping as performed by our subjects. Farley et al. [29] reported preferred hopping frequency
values of 2.17 ± 0.07Hz (65% duty cycle) in two-legged hopping, within one standard deviation
of our results. However, their subjects tended to be younger and lighter (21 years, 63.5 kg)
than our subject population (32 years, 77.2 kg) possibly contributing to the small difference in
the preferred frequencies. In our second or validation study the age and anthropometry of the
subject population was comparable to Farley et al. [29] and we observed preferred hopping
frequencies identical to the values recorded with the first set of subjects (2.32 ± 0.35Hz, 66%
duty cycle).

Women and men demonstrated similar hopping frequencies when permitted to perform at self-
selected rates. When frequency of hopping was not constrained, neither was the leg stiffness.
The female subjects could have chosen to hop with similar leg stiffness as the male group in
these preferred hopping conditions by performing the task at higher self-selected frequencies.
Instead, the women choose to hop at a similar preferred frequency as the comparatively heavier
men by recruiting less leg stiffness. Why did the women hop with identical preferred frequency
and duty cycle as the men? One possible explanation is inherent active muscle stiffness
differences between genders. Other explanations include reflex factors and energy
conservation.

Preferred frequencies of hopping may be explainable in terms of reflex and active force latency.
The human soleus muscle behaves similar to a second order low-pass filter wherein the
maximum energy efficiency occurs at a natural motion frequency of approximately 2 Hz
[48]. Jones and Watt [47] similarly proposed that the preferred frequency is tuned to the
polysynaptic reflex latency. They observed low amplitude monosynaptic reflex 40 ms after
initial Achilles tendon stretch, a larger amplitude polysynaptic reflex at 120 ms and an
electromechanical delay of 30 ms in the non-weight-bearing ankle. Thus, total time from initial
Achilles stretch to the polysynaptic reflex force was 150 ms, occurring near-synchronously
with the lowest position in hopping stance phase. This timing may optimize hopping efficiency
[49]. Ground contact time in the current study was 284 ± 48ms during preferred hopping. The
acceleration peak during ground contact from our measurements was roughly tuned, i.e. within
10 ms, to polysynaptic reflex force latency reported in the literature. This reflex latency is
independent of gender or body mass, suggesting the preferred hoping frequency should also
be independent of body mass. Further research is necessary to evaluate the gender factors in
reflex contribution to hopping function.

An alternative explanation for the preferred frequency is the efficiency derived by tuning leg
stiffness to the intrinsic properties of muscle. Active muscle stiffness is proportional to the
applied moment or bias force [50-52]. Empirical measurements indicate this relationship is
approximately linear [53-55] and has been expressed as

k = qF0 (2)

where F0 is the equilibrium force in the leg and q a constant of linear proportionality relative
to the equilibrium length [56]. Wilson et al. [55] conclude the nonlinear behavior is less than
7% over the full range of force suggesting that this linear approximation is a reasonable
description of muscle stiffness. The equilibrium equation can be expressed as the sum of the
inertial load, Mω2x, elastic forces, kx, gravitational load, Mg and applied muscle force F0,

Granata et al. Page 6

J Electromyogr Kinesiol. Author manuscript; available in PMC 2006 November 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mω2x + kx +Mg + F0 = 0 (3)

where M is the system mass, ω is the oscillation frequency, x the displacement amplitude, k
the elastic stiffness, g the acceleration of gravity. The minimum energy level of the dynamic
system is achieved when the equilibrium force is equal and opposite to the static load, F0 =
Mg requiring the system to oscillate at the natural frequency, ω2 = k/M. Combining Eqs. (2)
and (3), it can be shown that the natural frequency, i.e. the state of minimum dynamic energy,
is independent of system mass

ω2 = qg (4)

If the preferred frequency of hopping is related to energy cost then preferred hopping frequency
may be independent of body mass as demonstrated by our results. Further research is necessary
to evaluate the intrinsic stiffness properties of the hopping system in relation to the preferred
frequency of hopping. Further study is also necessary to evaluate the interaction between this
behavior and the reflex tuning response described above.

A common trend in both men and women was the behavior of the COM during ground contact.
Research suggests peak-to-peak COM motion is modulated with hopping frequency or running
cadence [28]. By modifying COM displacement it was possible to maintain a constant value
of peak acceleration and peak ground-contact force independent of hopping frequency. Control
of ground-contact force is necessary to limit peak joint load and may be necessary to prevent
articular and osteoligamentous injury. Although ground-contact force was statistically
influenced by frequency the difference between the 2.5 and 3.0 Hz conditions was merely 4%
of the peak value. Had the subjects failed to modulate the COM displacement this difference
would have exceeded 44%. Instead the COM displacement amplitude was reduced with the
square of frequency to maintain the peak force at approximately 3 times body weight. Results
demonstrated that the square of frequency explained 89% of the variability in amplitude of
COM motion. This suggests an attempt to limit ground-contact force or peak joint load by
modulating COM displacement through the control of leg stiffness.

5. Conclusion
Healthy women demonstrated lower leg stiffness during functional hopping tasks compared
to age-matched men. This difference was necessary to oscillate the lighter body mass of the
female participants at the same frequency as the heavier male subjects. However, during
preferred hopping conditions the female subjects were not constrained to recruit lower stiffness.
Nonetheless, the women continued to demonstrate lower leg stiffness then the men, hopping
at similar preferred frequencies. Potential explanations for the mass-independent selection of
preferred frequency are proposed.

Epidemiologic injury data has established that females are at a greater risk for musculoskeletal
injuries than their male counterparts. Active muscle stiffness contributes to the biomechanical
stability and may contribute to the prevention of musculoskeletal injury. The results of recent
non-weight-bearing measurements suggest biomechanical stability may be challenged in
women as a result of less active muscle stiffness. The current study illustrates the lower active
stiffness is also evident in functional tasks. To control gender bias in injury risk further research
is necessary to evaluate the affect of the active stiffness and stability as a risk factor in injury.
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Fig. 1.
Subjects hopped in place on the force platform at preferred, 2.5, and 3.0 Hz hopping
frequencies. Stiffness was calculated from vertical force and COM displacement.
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Table 1
Subject characteristics. Male subjects were significantly taller and heavier than female subjects. Preferred
hopping frequency for the male and female subjects were not significantly different. (mean±SD)

Study #1 Study #2

Men Women Men Women

# Subjects 15 15 11 10
Age (yrs) 32.1±8.3 32.6±9.7 27.8±4.3 24.1±4.3
Height (m) 1.80±0.08* 1.69±0.06 1.76±0.05 1.68±0.07
Weight (kg) 84.1±12.3* 70.4±15.2 80.1±9.2* 66.9±12.3
Preferred 2.38±0.24 2.30±0.21 2.33±0.34 2.31±0.35
hop frequency (Hz)

*
=Males significantly greater than females.
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Table 2
Equivalent vertical leg stiffness, hopping duty cycle, ground reaction force (GRF) and center of mass (COM)
displacement by gender (mean±SD)

Hopping frequency Males Females

Stiffness (kN/m) Preferred* 26±9 19±8
2.5 Hz* 31±8 24±5
3.0 Hz* 43±8 35±7

Duty cycle (%) Preferred 65±8 65±8
2.5 Hz 62±8 63±8
3.0 Hz 62±8 64±7

Peak vertical GRF Preferred 3.0±0.5 2.9±0.5
(Body weight) 2.5 Hz 3.2±0.5 3.1±0.4

3.0 Hz 3.1±0.3 3.0±0.3
COM displacement Preferred 8.2±2.0 8.6±2.1
(cm) 2.5 Hz 7.4±0.8 6.8±0.9

3.0 Hz 5.1±0.5 5.0±0.3

*
=Males significantly greater than females
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